

Dense granular flows 3D imaging of collective motion

Wolfgang Losert Department of Physics, University Of Maryland

Mitch Mailman Kerstin Nordstrom Steven Slotterback Matt Harrington

Summary

Our question is how granular flows start and stop

Measuring Mesoscale Dynamics via 3D imaging

Trajectories for all (almost all) particles for flows under steady shear, cyclic shear, segregation

 Developing Mesoscale Metrics of collective motion (e.g. broken links network) to connect macroscale
 & microscale

Can be applied to other flow geometries

Our Question: How does granular flow start and stop?

- □ Deformation under Impact
- ☐ Failure and flow under cyclic forcing

Examples of cyclic forcing

- Tidal forces, e.g. on spinning asteroids
- External vibrations, e.g. due to earthquakes

Fluidization of sandy soil during earthquake

Granular Flow Descriptions on Micro-, Meso-, and Macroscales

Particles Motion
Velocity,
Restitution Coefficient
1 Dia

Mesoscale
Static Force Chains
Dynamic Clusters
5-15 Dia

Macroscale Velocity Field

10-100s Dia

Mesoscale Structure is sensitive to Strain

From Majumdar/Behringer, Nature, 2005

Tuning mesoscale structure with strain

Compresses sample up to a strain of ~ 1%.

How does the preparation of the sample change failure and flow?

Triggering failure and flow: Impact experiments

1 inch steel sphere

Photron fastcam @ 2000 fps

- Drop heights 1-100 cm
 - Wet vs Dry
 - Vary strain to tune mesoscale struture

Interstitial fluid does not alter scaling

- Our wet and dry systems show consistent exponent
- Similar prefactor, note larger A = deeper impact interesting!

Our Goal is to characterize granular flows on the mesoscale

Measure particle motion inside a 3D granular material

Characterize mesoscale structures and mesoscale dynamics

3D imaging of granular shear flow

Joshua Dijksman

Laser

sheet

er + line

Toiya *et al. Granular Matter (2007)*Slotterback *PRL (2008)*

Steven M Slotterback

Masahiro Toiya

3D imaging yields complete internal structure and dynamics

Example of internal dynamics:

Large Particles

Convection Rolls during segregation of binary mixtures

Small Particles

Effects of mesoscale structure on granular flow

Schematic
Contact network
steady shear

Schematic
Contact network
shear reversal

Toiya et al. PRL 2004

Masahiro Toiya

Small initial torque during shear reversal

Derek Updegraaf with E. Wandersman, J. Dijksman, M. van Hecke

Network characterization of granular dynamics

Persistent Network	Broken Link Network
	Reference Frame

Giant Component of the Network

Percolation transition

Cyclic Forcing

Summary

Our question is how granular flows start and stop

- Measuring Mesoscale Dynamics via 3D imaging
 Contact me if you like to get trajectories for all particles for steady shear, cyclic shear, segregation
- Developing Mesoscale Metrics of collective motion (e.g. broken links network) to connect macro & microscale
 Can be applied to other flow geometries

Wolfgang Losert wlosert@umd.edu

Mitch Mailman, Steven Slotterback, Kerstin Nordstrom, Matt Harrington

